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Abstract 

In this paper, we consider graded N-prime submodules as introduced 
by Sanh, and investigate their properties besides characterizations. For 
example, we prove that (i) if X is a fully invariant graded submodule 
of M, then the residual ideal of X by M is a graded ideal of S, and           
(ii) if M is a graded quasi-projective module, X is a graded N-prime 
submodule of M and XY ⊂  is a fully invariant graded submodule of 
M, then YX  is a graded N-prime submodule of .YM  

Also, we characterize graded N-prime submodules. 

1. Introduction 

Dauns introduces the notion of a prime submodule and investigates some 
of its properties [4]. Graded rings and graded modules have been studied           
by Nastasescu and Van Oystaeyen [5]. Moreover, based on the definition          
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of prime submodules in the sense of Dauns, Atani and Fazalipour have 
defined the graded prime submodules of graded modules and investigated 
some properties [1, 2]. The notion of graded primary submodules has been 
introduced and studied by Oral et al. [6]. Recently, Sanh [7] introduced the 
prime submodule of fully invariant submodule of R-module M. Let X be a 
fully invariant proper submodule of M. Then X is called a prime submodule 
of M if for any ideal I of S and any fully invariant submodule U of               
M, ( ) XUI ⊂  implies ( ) XMI ⊂  or .XU ⊂  In this paper, we use the 

definition of prime submodules in the sense of Sanh and call these N-prime 
submodules. Moreover, we define an N-prime submodule in graded R-
modules and we call it a graded N-prime submodule. We prove that if X is a 
fully invariant graded submodule of M, then the residual ideal of X by M is a 
graded ideal of S. It is also shown that if M is a graded quasi-projective 
module, X is a graded N-prime submodule of M and XY ⊂  is a fully 
invariant graded submodule of M, then YX  is a graded N-prime submodule 

of .YM  Also, we give the characterization of graded N-prime submodule as 

stated in Theorem 2.2. 

Let G be an abelian group with identity e and R be any ring with unit .1R  

The ring R is called a graded ring if ,gGg RR ∈⊕=  where gR  is an additive 

subgroup of R and ghhg RRR ⊆  for every g, h in G. The summands s’gR  

are called homogeneous components. Also, we write ( ) ∪ Gg gRRh ∈= .             

If ,Ra ∈  then a can be written uniquely as ∑ ∈Gg ga ,  where ga  is a 

component of a in .gR  In this case, eR  is a subring of R and .1 eR R∈  

Let R be a graded ring and M be an R-module. We call M a graded        
R-module if there exists a family of subgroups { } GggM ∈  of M such            

that gGg MM ∈⊕=  and .ghhg MMR ⊆  The hgMR  denotes the additive 

subgroup of M consisting of all finite sum of elements ,hgsr  where gg Rr ∈  

and .hh Ms ∈  Also, we write ( ) ∪ Gg gMMh ∈=  and the elements of ( )Mh  
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are called to be homogeneous. If M is a graded R-module, then gM  is an 

eR -module for all .Gg ∈  A submodule X of a graded R-module M is       

called a graded submodule of M if ,gGg XX ∈⊕=  where gg MXX ∩=  

for .Gg ∈  In this case, gX  is called the g-component of X. Moreover, 

XM  becomes a graded module with g-component ( ) =∈GgXM  

(( ) ) .Ggg XXM ∈+  

2. Main Results 

Let R be a graded ring, M and N be graded R-modules and NMf →:  

be an R-module homomorphism. Then f is said to be a graded R-module 
homomorphism of degree k if ( ) gkg NMf ⊆  for each ,Gg ∈  where .Gk ∈  

Graded homomorphism without an indication of degree is understood to have 
degree zero. Let ( )( )kR MEND  be the set of graded module homomorphism 

from M to M of degree k and let ( ) ( )( ) .kRGkR MENDMEND ∈⊕=  Then 

( )MENDR  is a graded ring and ( )MENDR  is a subring of ( )MEndR               

(see [3, Subsection 9.1, p. 303]). If G is a finite group, then ( ) =MENDR  

( )MEndR  (see [5]). 

Let M be a graded right R-module and ( ).MENDS R=  A graded 

submodule X of M is called a fully invariant graded submodule of M if for 
any ,Ss ∈  ( ) .XXs ⊂  By the definition, the family of all fully invariant 

graded submodules of a graded module M is non-empty and closed under 
intersections and sums. 

Let I, J be graded ideals of S and X be a graded submodule of M. We 
define 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∈∈∈|= ∑ ≤≤ ni iiii nJhyIhxyxIJ
1

,, N  and ( ) ( )
( )∑ ∈

=
Ihf

XfXI .  
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For any graded right R-module M and any graded right ideal I of            
graded ring R, the set MI is a fully invariant graded submodule of M (see                
[2, Subsection 1]). 

Definition 2.1. Let M be a graded right R-module and X be a proper  
fully invariant graded submodule of M. Then X is called a graded N-prime 
submodule of M if for any graded ideal I of S and any fully invariant graded 
submodule U of ( ) XUIM ⊂,  implies ( ) XMI ⊂  or .XU ⊂  

Especially, if we take M is the R-module R, a graded ideal P of R is a 
graded prime ideal if for any graded ideals I, J of R with PIJ ⊂  implies 

PI ⊂  or .PJ ⊂  From now on, a graded R-module M means a graded right 
R-module. 

The following theorem gives some characterization of graded N-prime 
submodule. 

Theorem 2.2. Let M be a graded R-module and X be a proper fully 
invariant graded submodule of M. Then the following are equivalent: 

(1) X is a graded N-prime submodule of M. 

(2) For any graded right ideal I of S and graded submodule U of M, if 
( ) ,XUI ⊂  then either ( ) XMI ⊂  or .XU ⊂  

(3) For any ( )sh∈ϕ  and fully invariant graded submodule U of M, if 

( ) ,XU ⊂ϕ  then either ( ) XM ⊂ϕ  or .XU ⊂  

Proof. (1⇒2) Suppose X is a graded N-prime submodule of M. Take any 
graded right ideal I of S and a graded submodule U of M where ( ) .XUI ⊂  

Since I is a graded right ideal of S, IIS ⊂  and SI is a graded ideal of          
S. Since U is a graded submodule of M, ( )US  is a fully invariant graded 

submodule of M. If ( ) ,XUI ⊂  then ( ) ( )( ) ( ) ( ) ( )( )UISUSISUSSI ⊂=  

( ) .XXS ⊂⊂  From assumptions that X is a graded N-prime submodule of 

M, we have ( ) XMSI ⊂  or ( ) .XUS ⊂  Hence, either ( ) XMI ⊂  or .XU ⊂  

(2⇒3) Obvious. 
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(3⇒1) Take any graded ideal I of S and any fully invariant graded 
submodule U of M where ( ) .XUI ⊂  Since I is a graded ideal, I has a set of 

homogeneous generators. By (3), we obtain ( ) XMI ⊂  or .XU ⊂   

Let M be a graded R-module, ( )MENDS R=  and X be a fully invariant 

submodule of M. We define the set ( ){ }.XMfSfI X ⊂|∈=  The set XI  is 
a graded ideal if X is a fully invariant graded submodule as we give in the 
following lemma. 

Lemma 2.3. Let M be a graded R-module and ( ).MENDS R=  Suppose 

that X is a fully invariant graded submodule of M. Then the set XI  is a 
graded ideal of S. 

Proof. Take any S∈ϕ  and .XIf ∈  It is clear that ( )+,XI  is an 

abelian group. Then ( ) ( ) XXMf ⊂ϕ⊂ϕ  and ( ) ( ) .XMfMf ⊂⊂ϕ  So 

,fϕ ϕf  in ,XI  and we prove that XI  is an ideal of S. Furthermore, we will 

prove that XI  is a graded ideal of S, i.e., ( )gXGgX SII ∩∈⊕=  for every 

.Gg∈  For every ,Gg ∈  ,XgX ISI ⊂∩  so we obtain ( )gXGg SI ∩∈⊕  

.XI⊂  Take any .XIf ∈  Then ∑ ∈= Gg gff  and ( ) ( )MfMf Gg g ⎟
⎠
⎞

⎜
⎝
⎛= ∑ ∈  

.X⊂  We will prove that ( ).gXGg SIf ∩∈⊕∈  It is clear that ,gg Sf ∈  so 

we have to prove that Xg If ∈  for every .Gg ∈  Without loss of generality, 

we may assume that ∑ == m
i giff 1 ,  where 0≠igf  for all mi ...,,2,1=  

and 0=gf  for all { }....,,, 21 mgggg ∉  Since M is a graded module, we 

assume that ∑ == l
j h jmm 1 ,  where 0≠jhm  for all ....,,2,1 lj =  Since 

( ) XMf ⊂  and MMm jj hh ⊂∈  for all j, we obtain ( ) Xmf jh ∈  for all 

j. Then ( )∑ = ∈m
i hg Xmf ji1 ,  where ( ) .jiji hghg Mmf ∈  Since X is a graded 

submodule, we obtain ( ) .XXMmf jiji hghg ⊂∈ ∩  Thus, ( ) Xmf ji hg ∈  

for all j so ( ) XMf ig ⊂  and Xg If i ∈  for all i, as required.  
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It is worth pointing out that XI  is a graded prime if X is a graded          

N-prime, as we give in the following theorem. 

Theorem 2.4. Let M be a graded R-module, ( )MENDS R=  and X be           

a fully invariant proper graded submodule of M. If X is a graded N-prime 
submodule, then XI  is a graded prime ideal of S. 

Proof. Let K, L be graded ideals of XI  such that .XIKL ⊂  Then 

( ) ( ) .XMIMKL X ⊂⊂  If we assume that ,XIK ⊂/  then ( ) .XMK ⊂/  

Since submodule X is a graded N-prime submodule, ( ) ,XML ⊂  so we 

obtain .XIL ⊂  Thus, XI  is a graded prime ideal of S.  

We define the set ( ) ( )∑ ∈= If MfMI .  If ( ) ,XMI ⊂  then XII ⊂  and 

the converse is also true as we prove in the following proposition. 

Proposition 2.5. Let M be a graded R-module, X be a fully invariant 
graded submodule of M and I be a graded ideal of S. Then ( ) XMI ⊂  if and 

only if .XII ⊂  

Proof. Take any ,If ∈  ( ) ( ).MIMf ⊆  Since ( ) ,XMI ⊂  we have 

( ) .XMf ⊂  So we have .XIf ∈  Conversely, consider the set ( ).MI  Since 

,XII ⊂  we have ( ) ( )∑ ∑∈ ∈ ⊂⊂If If X
XMfMf .   

We conclude from Proposition 2.5 and Definition 2.1 and obtain the 
following theorem. 

Theorem 2.6. Let M be a graded R-module and X be a fully invariant 
proper graded submodule of M. Then X is a graded N-prime submodule        
if and only if for any graded ideal I of S and any fully invariant graded 
submodule U of M such that ( ) XUI ⊂  implies XII ⊂  or .XU ⊂  

Proof. Let X be a graded N-prime submodule. By Definition 2.1, for any 
graded ideal I of S and any fully invariant graded submodule U of M such 
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that ( ) XUI ⊂  implies ( ) XMI ⊂  or .XU ⊂  According to Proposition 2.5, 

( ) XMI ⊂  is equivalent to .XII ⊂   

Definition and some properties of a graded N-prime module are given as 
follows. 

Definition 2.7. A graded R-module M is called an N-prime module if 0 is 
a graded N-prime submodule of M. 

We can characterize N-prime module using the annihilator as the 
following proposition. 

Proposition 2.8. Let M be a graded R-module and ( ) == MENDS R  

( ) .kRGk MEND∈⊕  A module M is an N-prime module if and only if 

( ) ( )XAnnMAnn SS =  for all nonzero graded submodules X of M. 

Proof. (⇒) Let M be a graded N-prime module. Then 0 is a graded         
N-prime submodule of M. Since X is a nonzero graded submodule of M, 

( ) ( ).XAnnMAnn SS ⊆  Take any ( ),XAnnf S∈  hence ( ) .0=Xf  Since X 

is a nonzero graded submodule and 0 is a graded N-prime submodule of      
M, we have ( ) .0=Mf  Equivalently, ( ).MAnnf S∈  So we obtain ( )MAnnS  

( )XAnnS⊇  and moreover ( ) ( ).XAnnXAnn SS =  

(⇐) Take any graded ideal I of S and a nonzero fully invariant graded 
submodule X of M where ( ) .0=XI  Since ( ) ( ),XAnnMAnn SS =  ( ) .0=MI  

So we obtain 0 is a graded N-prime submodule of M. It is proved that M is a 

graded N-prime module.  

Proposition 2.9. Let M be a graded N-prime R-module. Then =S  
( ) ( )kRGkR MENDMEND ∈⊕=  is a prime ring. 

Proof. Let M be a graded N-prime module. Then 0 is a graded N-prime 
submodule of M. Based on Theorem 2.4, 0I  is a graded prime ideal of S, so 

S is a prime ring.  
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The following proposition states the relations between a graded module 
homomorphism of M and a graded module homomorphism of .YM  

Proposition 2.10. Let M be a graded module, Y be a fully invariant 
graded submodule of M. If MMf →:  is a graded module homomorphism 

of degree zero, then YMYM →ϕ :  with ( ) ( ) YmfYm +=+ϕ  is a 

graded module homomorphism of degree zero. 

Proof. (i) We will show that ϕ  is a mapping. Take any ,1 Ym +  

YMYm ∈+2  with ,21 YmYm +=+  so .21 Ymm ∈−  Since Y is a fully 

invariant graded submodule of M, ( ) ( ) ( ) ,2121 Ymfmfmmf ∈−=−  it 

means ( ) ( ) .21 YmfYmf +=+  In other words, ( ) ( ).21 YmYm +φ=+ϕ  

 (ii) It is clear that ϕ  is a module homomorphism. 

(iii) We show that φ  is a graded module homomorphism of degree zero. 

Take any ( ) YYMKm gg +∈+  for some ,Gg ∈  a homogeneous element 

of degree g in .YM  We will prove that ( ) ( ) .YYMYM gg +∈+ϕ  Based 

on definition of ,ϕ  ( ) ( ) .YMfYM gg +=+ϕ  Since f is a graded module 

homomorphism of degree zero, ( ) .gg Mmf ∈  In other words, ( )∈+ϕ Ymg  

( ) .YYM g +  It is proved that (( ) ) ( ) YYMYYM gg +⊆+ϕ  or ϕ  is a 

graded module homomorphism of degree zero.  

We will look more closely at the properties of graded N-prime 
submodule of quotient module. 

Lemma 2.11. Let M be a graded module, X, Y be graded submodules of 
M and .XY ⊂  Then YX  is a graded submodule of .YM  

Proof. It is clear that YX  is a submodule of .YM  Furthermore, we 

will show that YX  is a graded submodule. It means, we will show that 

( ) .gGg YMYXYX ∩∈⊕=  The condition ( ) YXYMYX gGg ⊆⊕ ∈ ∩  
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is obvious. Let ∑ ∈ ∈= Gg g YXmm .  It is sufficient to show that =gm  

( )gg YXYXYm ∩∈+  for each .Gg ∈  Since X is a graded submodule 

of M, gg MXm ∩∈  for each ,Gg ∈  so Xmg ∈  and .gg Mm ∈  Then 

YXYmg ∈+  and ( ) ( ) .ggg YMYYMYm =+∈+  Hence, += gg mm  

( ) .gYMYXY ∩∈   

Theorem 2.12. Let M be a graded quasi-projective module, X be a 
graded N-prime submodule of M and XY ⊂  be a fully invariant graded 
submodule of M. Then YX  is a graded N-prime submodule of .YM  

Proof. Let ( ).YMENDS R=  Let ϕ  be a homogeneous element of 

degree zero in S  and YU  be a fully invariant graded submodule of YM  

with UY ⊂  and ( ) .YXYU ⊂ϕ  Since M is quasi-projective, we can find 

( ) ( )( ),MENDhShf R=∈  f is a homogeneous element of degree zero in S 

such that ,fvv =ϕ  where YMMv →:  is the graded canonical projection. 

Then ( ) ( ) ( ) ( )( ) .YXYYUfUfvUvYU ⊂+==ϕ=ϕ  It follows that 

( ) .XUf ⊂  Since Y is a fully invariant graded submodule of M and YU  is 

a fully invariant graded submodule of ,YM  U is a fully invariant graded 

submodule of M. By the primeness of X, we have ( ) XMf ⊂  or .XU ⊂  

Thus, ( )( ) ( ) ( ) ( ) YXYMMvMfvYYMf ⊂ϕ=ϕ==+  or ,YXYU ⊂  

that is, YX  is a graded N-prime submodule of .YM   
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